
Advanced Computer Architecture CMSC 611

Homework 3

Due in class Oct 17
th
, 2012

(Show your work to receive partial credit)

1) For the following code snippet list the data dependencies and rewrite the code to resolve

name dependencies. (15 points)

Loop: LD R2, 0(R7) ----- 0

Add R1, R2, R3 ----- 1

 Sub R4, R6, R1 ----- 2

 Add R2, R5, R6 ----- 3

 LD R4, 32(R1) ----- 4

 SD 36(R1), R2 ----- 5

 BEQ R4, Loop ----- 6

Data Dependency – 1 & 2, 1 & 4 and 1 & 5 on R1

 0 & 1, 3 & 5 on R2

 4 & 6 on R4

 Name Dependencies- Anti-dependence between 1 and 3 because of R2

 Output dependence between 2 and 4 because of R4

 Output dependence between 0 and 3 because of R2

Name dependencies can be resolved by renaming registers R2 and R4 with temporary

registers T2 and T4

Loop: LD R2, 0(R7) ----- 0

Add R1, R2, R3 ----- 1

 Sub R4, R6, R1 ----- 2

 Add T2, R5, R6 ----- 3

 LD T4, 32(R1) ----- 4

 SD 36(R1), T2 ----- 5

 BEQ T4, Loop ----- 6

2) From the course slides. (Multi-cycle FP pipeline for MIPS) (45 points)

 Use the instruction latencies as indicated in the selected slide to first show all the stalls

that is present in the following piece of code if the branch is not taken.

 Now unroll this loop as many times as needed and schedule the instructions to remove all

the stalls. You may rename registers i.e. use new registers and/or change the

immediate/offset values. You can ignore structural hazards as well.

 What is the speed up that you achieved after unrolling and scheduling?

 Loop: LD F0, 0(r0)

LD F2, 0(r2)

MULTD F4, F0, F2

LD F6, 0(r4)

ADDD F8, F4, F6

SD 0(r6), F8

ADDI r0, r0, #4

ADDI r2, r2, #4

ADDI r4, r4, #4

ADDI r6, r6, #4

SUBI r8, r8, #1

BNEZ r8, Loop

 Clock

Loop: LD F0, 0(r0) 1

LD F2, 0(r2) 2

Stall

MULTD F4, F0, F2 4

LD F6, 0(r4) 5

Stall

Stall

Stall

Stall

Stall

ADDD F8, F4, F6 11

Stall

Stall

Stall

SD 0(r6), F8 15

ADDI r0, r0, #4 16

ADDI r2, r2, #4 17

ADDI r4, r4, #4 18

ADDI r6, r6, #4 19

SUBI r8, r8, #1 20

Stall

BNEZ r8, Loop 22

Stall 23

Unrolling it twice is sufficient to remove all the stalls.

Loop: LD F0, 0(r0) 1

LD F2, 0(r2) 2

LD F10, 4(r0) 3

LD F12, 4(r2) 4

MULTD F4, F0, F2 5

MULTD F14, F10, F12 6

LD F6, 0(r4) 7

LD F16, 4(r4) 8

ADDI r0, r0, #8 9

ADDI r2, r2, #8 10

ADDI r4, r4, #8 11

ADDD F8, F4, F6 12

ADDD F18, F14, F16 13

ADDI r6, r6, #8 14

SUBI r8, r8, #2 15

SD -8(r6), F8 16

BNEZ r8, Loop 17

SD -4(r6), F18 18

Unrolled loop is (23*2)/18 = 2.55 times faster than without unrolling with respect to

clock cycles consumed.

 (Ignoring pipeline fill time)

CPI for a) is 23/12 ≈ 2

 CPI for b) is 1

After unrolling the CPI is now the same as the ideal CPI.

3) Tomasulo’s Algorithm

Consider the following specifications. (40 points)

FU type cycles in EX Number of FUs

Integer 1 1

FP adder 5 1

FP multiplier 8 1

FP Divide 24 1

Assume the following.

 Functional units are not pipelined.

 All stages except EX take one cycle to complete.

 No limit on reservation stations.

 There is no forwarding between functional units. Both integer and floating point

results are communicated through the CDB.

 Memory accesses use the integer functional unit to perform effective address

calculation.

 All loads and stores will access memory during the EX stage. Pipeline stage EX

does both the effective address calculation and memory access for loads/stores.

 There are unlimited load/store buffers and an infinite instruction queue.

 Loads and stores take one cycle to execute. Loads and stores share a memory

access unit.

 If an instruction is in the WR stage in cycle x, then an instruction that is waiting

on the same functional unit (due to a structural hazard) can begin execution in

cycle x , unless it needs to read the CDB, in which case it can only start executing

on cycle x + 1.

 Only one instruction can write to the CDB in a clock cycle. Branches and stores

do not need the CDB since they don’t have WR stage.

 Whenever there is a conflict for a functional unit or the CDB, assume program

order.

 When an instruction is done executing in its functional unit and is waiting for the

CDB, it is still occupying the functional unit and its reservation station. (meaning

no other instruction may enter).

 Treat the BNEZ instruction as an Integer instruction. Assume LD instruction after

the BNEZ can be issued the cycle after BNEZ instruction is issued due to branch

prediction

Fill in the execution profile for the code given in the table which includes the

cycles that each instruction occupies in the IS, EX, and WR stages and comments

to justify your answer such as type of hazards and the registers involved.

Instruction IS EX WR Comments

1 LD F0, 0(r0) 1 2 3

2 ADDD F2, F0, F4 2 4-8 9 RAW on F0 from #1

3 MULTD F4, F2, F6 3 17-24 25

RAW on F4 from #2

Structural Hazard from MULT at #7

(Only one functional Unit)

4 ADDD F6, F8, F10 4 9-13 14
Structural Hazard from Adder

Add instruction #2

5 DADDI r0,r0, #8 5 6 7

6 LD F1, 0(r1) 6 7 8

7 MULTD F1, F1, F8 7 9-16 17 RAW on F1 from #6

8 ADDD F6, F3, F5 8 14-18 19
Structural Hazard from adder

Add instruction #4

9 DADDI r1, r1, #8 9 10 11

